Sydney Grammar School

TRIAL HSC EXAMINATION 1992

MATHEMATICS

3 UNIT

Time Allowed: 2 hours

13th August 1992

INSTRUCTIONS:

- * All questions may be attempted.
- * All questions are of equal value.
- * All necessary working must be shown.
- * Marks may not be awarded for careless or badly arranged work.
- * Approved calculators may be used.

SPECIAL INSTRUCTIONS:

- * Start each question on a new page.
- * Hand in each question separately.
- * Write your examination number on each page.

A table of standard integrals is included on the last page.

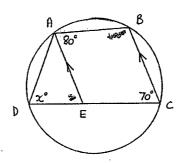
SGS HSC Trial 1992..... 3 Unit Mathematics Form 6..... Page 2

QUESTION ONE (Start each question on a new page)

- (a) Solve for x the inequality $\frac{1}{x-1} < 5$.
- (b) (i) If $f(x) = x^2$ and $g(x) = \frac{1}{x}$, show algebraically that the graphs of y = f(x) and y = g(x) intersect at the point (1,1).
 - (ii) Find f'(1) and g'(1). Hence find the acute angle between the curves $y = x^2$ and $y = \frac{1}{x}$ at the point (1,1). (Give your answer correct to the nearest degree).
- (c) Use the substitution u = x + 2 to evaluate $\int_{-2}^{0} x(x+2)^4 dx$.
- (d) (i) Find the exact value of $\cos \left[\sin^{-1}\left(-\frac{1}{2}\right)\right]$.
 - (ii) Evaluate $\int_0^3 \frac{dx}{\sqrt{36-x^2}}.$
- (e) Find all value(s) of k for which the line x 2y + k = 0 is a tangent to the circle $x^2 + y^2 = 4$.

QUESTION TWO (Start each question on a new page)

(a)



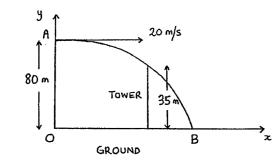
In the diagram above, ABCD is a cyclic quadrilateral and E is a point on DC such that $AE \parallel BC$. $\angle BAE = 80^{\circ}, \angle BCD = 70^{\circ}$ and $\angle ADC = x^{\circ}$.

- (i) Copy this diagram onto your answer page.
- (ii) Find x, stating all reasoning.

(Exam continues next page...)

QUESTION TWO (Continued)

(b)

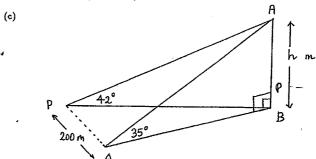


In the diagram above, an object is projected horizontally with a velocity of $20 \,\mathrm{m/s}$ from a point A 80 metres above the ground and strikes the ground at point B.

- If x and y are respectively the horizontal and vertical components of the object's displacement from O, derive expressions for x and y after t seconds.
 (Take O to be the origin and assume the acceleration due to gravity to be 10 m/s²).
- (ii) Find the time taken for the object to reach the point B, and find the distance OB.
- (iii) If the object just clears a vertical tower of height 35 metres, find the distance from O to the base of the tower.

SGS HSC Trial 1992...... 3 Unit Mathematics Form 6...... Page 4

QUESTION TWO (Continued)



The diagram above shows a point P, due west of B, from which the angle of elevation to the top of a tower AB height h metres, is 42° . From a point Q, bearing 196° from the tower, the angle of elevation to the top of the tower is 35° . The distance from P to Q is 200 metres.

(i) State the size of $\angle PBQ$.

(ii) Show that
$$h = \frac{200}{\sqrt{\cot^2 42^\circ + \cot^2 35^\circ - 2 \cot 35^\circ \cot 42^\circ \cos 74^\circ}}$$

(iii) Find h correct to 3 significant figures.

(Exam continues overleaf...)

(Exam continues next page...)

SGS HSC Trial 1992..... 3 Unit Mathematics Form 6..... Page 5

QUESTION THREE (Start each question on a new page)

(a) If α, β, γ are the roots of the equation:

$$2x^3 - 3x^2 + 5x + m = 0,$$

- (i) find the value of $\alpha + \beta + \gamma$ and $\alpha^2 + \beta^2 + \gamma^2$,
- (ii) find the value of m if $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -2$.
- (b) Use one application of Newton's method to find a three decimal place approximation to a root of the equation $e^x 2x^2 = 0$. Use x = 1.5 as a first approximation to this root.

Copy and complete (correct to 2 decimal places) the following table of values for $P(x) = e^x - 2x^2$. Hence (i.e. without further calculation) explain why $x = 2 \cdot 2$ would have been a less suitable first approximation for the root of P(x) = 0.

ż	2.0	2-1	2.2	2.3	2-4
P(x)					

- (c) According to Newton's law of cooling, the rate at which a body cools in air is proportional to the difference between its temperature T° and the constant temperature P° of the surrounding air. This is expressed by the equation T = P + Ae^{kt}, where A, k are constants and t is the time in hours. The temperature of the air surrounding a heated body is 15°C, and the body cools from 90°C to 65°C in 3 hours.
 - (i) Find the temperature of the body after a <u>further</u> 2 hours. (Answer to the nearest degree). Also find (in °C per hour) the <u>body's rate of cooling at that time</u>.
 - (ii) Find (correct to the nearest minute) the time taken for the body to cool to 30°C from its original temperature.

(Exam continues overleaf...)

SGS HSC Trial 1992...... 3 Unit Mathematics Form 6..... Page 6

QUESTION FOUR (Start each question on a new page)

- (a) If $\sin \theta = \frac{5}{13}$, $0 < \theta < \frac{\pi}{2}$, find exact values for:
 - (i) $\sec \theta$
- \mathfrak{F} (ii) $\cos \frac{\theta}{2}$.

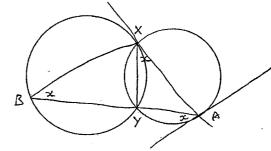
(b)

- (b) P is the point $(4t, 2t^2)$ on the parabola $x^2 = 8y$.
 - (i) Show that the equation of the normal to the parabola at P is $x + ty = 2t^3 + 4t$.
 - (ii) If the normal at P cuts the y axis at point A, show that the coordinates of A are (0, 2t² + 4).
 - (iii) If R is the mid point of AP, show that the locus of R is a parabola. Find the vertex and focus of the parabola.
- (c) Use mathematical induction to prove that $7^n > 4^n + 5^n$ for all integers $n \ge 2$.

QUESTION FIVE (Start each question on a new page)

(a) Solve the following equation over $0 \le x \le 2\pi$:

$$\cos 2x - 3\sin x - 2 = 0.$$

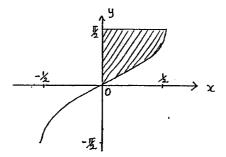


In the diagram above, two circles intersect at X and Y. The tangent at X to the larger circle cuts the smaller circle at A, and AY produced cuts the larger circle at B.

- (i) Draw a diagram showing all the given information.
- (ii) The tangent to the smaller circle at A is drawn. Prove that this tangent is parallel to BX.

(Exam continues next page...)

(c)



The diagram above shows the graph of $y = \sin^{-1}(2x)$. The shaded area is that bounded by the curve, the y axis and the line $y = \frac{\pi}{2}$.

- (i) Find this shaded area.
- (ii) If this area is rotated about the y axis, find the volume of the solid thus formed.

(Exam continues overleaf...)

QUESTION SIX (Start each question on a new page)

- (a) In the expansion of $(5+3x)^{20}$, in ascending powers of x, A_r is the coefficient of x^{r-1} in the term U_r , and A_{r+1} is the coefficient of x^r in the term U_{r+1} .
 - (i) Use the Binomial Theorem to write expressions for A_{r+1} and A_r . Hence show that:

$$\frac{A_{r+1}}{A_r} = \frac{63-3r}{5r}$$

- (ii) Hence find the greatest coefficient in the expansion of $(5+3x)^{20}$. (Leave your answer in the form 20 Cr $_3^a$ 5 b .)
- (b) On Wednesday morning at 5 a.m. an aeroplane crashes into a harbour. The rescue team and its equipment are most effective when the depth of water in the harbour is no more than 7 metres. At low tide the water is 5 metres deep, and at high tide the depth is 10 metres. Low tide occurs at 4 a.m. and high tide at 10.15 a.m. Assume that the movement of the tides is SHM.
 - (i) State the period and amplitude of the motion.
 - (ii) If the deadline for the rescue operation is 6 p.m. on Wednesday evening, find the periods of time between 5 a.m. and 6 p.m. during which the rescue team can work most effectively.

RN

